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Epigenetics
Epigenetic modification and transgenerational transfer

of phenotype at the individual or population level,

particularly in response to environmental change, is

at the forefront of biological investigation. The plasti-

city of this process allows an organism to respond to

changes in environmental conditions, potentially con-

ferring a survival advantage. In this review, we discuss

epigenetic transgenerational phenomena in the speci-

fic context of environmental stressors including

hypoxia and environmental toxicants.

Introduction

Epigenetic mechanisms allow the stable transfer of poten-

tially heritable traits to a subsequent generation or genera-

tions without requiring mutational events in genomic DNA

[1,2]. The transgenerational effects that actually comprise

epigenetic phenomenon are still contested, as is the very

definition of ‘epigenetics’ [2–4]. Transgenerational transfer

of traits can lower fitness, but they can also be adaptive by

enabling an organism’s survival and increasing its fitness

when resources and/or stressor levels change [5].

Epigenetic mechanisms

Numerous mechanisms for non-genetic transgenerational

transfer of traits have been identified, and new mechanisms

are likely to emerge. Key mechanisms of epigenetic change

include: covalent modification of dinucleotide sequences

(CpG islands) in promoter regions of genes by DNA methyl-

transferase enzymes (DNMTs), direct modifications of
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histones and nucleosomes via deacetylation and/or methyla-

tion reactions by histone deacetylase (HDACs) and

methyltransferase enzymes (HMTs) and post-translational

modifications along with transcriptional repression of

mRNAs and (retro)transposons by various interfering RNAs

(or non-coding RNAs) [2,6–8]. Collectively, these processes

and the components upon which they act constitute the

epigenome (Fig. 1). Individually or in concert, they are

important in ‘imprinting’ transcriptional regulatory states

for various cell lineages and/or tissues over an organism’s

lifetime [9]. Additionally, epigenomic processes demonstrate

‘plasticity’ of induction, with differences occurring between

various species and life-histories depending upon environ-

ment [10–12]. Consequently, the demonstration of stable

transfer of altered gene-regulatory states across multiple gen-

erations may implicate a contribution of epigenetic processes

in morphological evolution [13]. More specifically, to con-

stitute stable epigenetic inheritance, the transmission of

epigenetic markers is expected to comprise at least two to

three generations [14]. Current research is pursuing mechan-

istic underpinnings of how the epigenome is activated and/or

repressed by environmental stressors and how this translates

to altered phenotypes and fitness.

Animal models for assessing the interactions of

epigenetics and physiology

Not surprisingly, research using rodents dominates in epige-

netic studies, as in most medical researches. A few studies
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Figure 1. Relationship between the genome, the epigenome and the environment. Transgenerational effects can result from either parental effects or a

variety of mechanisms that depend on modifications of protein expression.

Adapted from [2].
have blended epigenetics, toxicology and ecophysiology in

aquatic organisms. Fishes, especially the zebrafish (Danio

rerio), are now important in studies combining epigenetic

transgenerational transfer and environmental stressors [15–

17]. The water flea Daphnia is another highly promising

aquatic model for studying the role of epigenetics in envir-

onmental phenotypic modification [18–20]. Zebrafish and

Daphnia embody particularly useful characteristics such as

short generation times and easy husbandry, making them

useful models in ecology, evolution and toxicology. Daph-

nids are also parthenogenic, providing the ability to follow

clonal populations across generations and eliminating

genetic variation [20,21]. Other models, such as the avian

embryo model, show promise for studying transgenerational

transfer of altered phenotypes [22].

Effects of environmental contaminants on the

epigenome

Various environmentally ubiquitous contaminants have

been shown to alter methylation patterns in promoter

regions of genes in mice (Mus musculus), rats (Rattus norvegi-

cus) and various fish species [23–31]. Exposures have resulted

in both hypo and hypermethylation changes in in utero,
e4 www.drugdiscoverytoday.com
juvenile and adult life stages. Contaminants may act through

induction/disruption of synthesis of the substrate S-adeno-

sylmethionine (SAM) and its efficacy as a methyl donor to

various methyltransferase enzymes (such as DNMTs). SAM

synthesis is catalyzed by methionine adenosyltransferase

enzyme, which transfers an adenosyl group from ATP to

methionine, an essential amino acid that is also a limiting

substrate for glutathione (GSH) synthesis [32]. In turn, GSH

helps manage antioxidant responses (redox buffering) and

toxicant biotransformation [33]. The potentially enhanced

recruitment of GSH during toxicant detoxification may be

the mechanism for competitive methionine depletion with

consequent reduced SAM synthesis and lowered genome

methylation (Fig. 2) [34]. There is evidence for contaminant

induced disruption of SAM synthesis and genome-wide

hypomethylation in liver tissue of false kelpfish (Sebastiscus

marmoratus) exposed to organotins [29]. Exposure to envir-

onmentally relevant concentrations of organotins (�100 ng/

L) induced DNA hypomethylation with concomitant reduc-

tion in SAM levels [29]. The disruption of SAM synthesis/

activity may also be due to increased induction of catechol O-

methyltransferases (COMTs) on exposure to elevated estro-

gens [35]. COMT enzymes convert catechol (hydroxylated)
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Figure 2. Relationship of SAM and GSH usage as produced from the

methionine cycle, which may be modulated by estrogenic/

contaminant (such as free radicals) stressors. These stressors are

capable of disrupting methyltransferase activity of SAMs and/or its

production, by either increasing its: (1) recruitment in the

detoxification of estrogens (i.e. COMT mediated conversion of

hydroxy-estrogens (OH-E2) to methoxy-estrogens (MeO-E2)); (2)

availability for glutathione (GSH) production under increased

oxidative stress.

Illustration adapted from [33,34,67].
estrogens to corresponding methyl ethers as a detoxification

mechanism that minimizes formation of potentially

reactive (oxidative) estrogen metabolites [36]. COMT facil-

itates the transfer of methyl groups from SAM to estrogens,

hence xeno-estrogen exposures may lower SAM mediated

DNMT formation (and in turn DNA methylation) due to

elevated COMT recruitment (Fig. 2) [35]. Collectively, these

effects lower effectiveness of SAM as a methylating agent,

potentially influencing phenotype as methylation patterns

are closely associated with transcriptional activity of genes,

with heavily methylated regions generally corresponding to

transcriptional silencing and vice versa for un-methylated

regions [12].

Thus far, studies with rats and mice provide among the

clearest cases relating xenobiotic exposures, with methyla-

tion (hypo/hypermethylation) changes leading to altered

phenotype. Altered methylation patterns for the lysopho-

spholipase (LPLase) gene occur in the germ cell lineage of

male rats exposed developmentally (in utero) to the fungicide,

vinclozolin (an anti-androgen) [26]. Altered methylation

occurred in up to three generations of male offspring with

observations of lowered sperm cell concentrations, motility

and increased apoptosis. Furthermore, methylation changes

in the LPLase gene (a key mediator of lipogenesis) were

associated with lowered gamete viability as LPLase is involved

with maintaining sperm lipid membrane viability in mam-

mals [37]. Developmental exposures of rats to 17b-estradiol

and the ‘weakly’ estrogenic (and ubiquitously present) plas-

ticizer, bisphenol-A (BPA), have demonstrated transcriptional

repression (via hypermethylation) of phosphodiesterase type

4 variant 4 gene (PDE4D4) with concomitant induction of

precancerous prostatic lesions typical of un-inhibited cell
proliferation [38]. The repression was specifically associated

with the observed etiology as phosphodiesterase enzymes are

involved with cyclic nucleotide monophosphate breakdown

(such as cAMP). Hence, PDE4D4 silencing helped elevate

intracellular cAMP levels, in turn enhancing the phosphor-

ylation of kinases and transcription factors associated with

cell proliferation (such as PKA and CREB) [38]. BPA exposure

of gravid mice constituting the agouti viable yellow (Avy)

mouse model, have shown a change in coat color for off-

spring from pseudo-agouti brown to pure yellow [27]. The

color change was due to hypomethylation of a retrotranspo-

son region upstream of the agouti gene. Interestingly, mater-

nal dietary supplementation with constituents capable of

acting as methyl donors (e.g. folic acid and the phytoestrogen

genistein), alleviate the hypomethylating effects of BPA, also

highlighting a central role of nutritional status in the main-

tenance of a ‘healthy’ epigenome [27].

Effects of nutrition on altered epigenetic imprinting

Nutritional status effectively regulates the epigenome, con-

tributing towards stress acclimation through metabolic

homeostasis [5]. For example, reduced methylation of the

PPARa receptor promoter region occurs in offspring of mater-

nal rats fed a protein-restricted diet [39,40]. Lowered promo-

ter methylation corresponded with increased PPARa mRNA

expression, illuminating the epigenetic control of receptor

expression. This regulation is important as PPARa constitutes

a key nuclear receptor maintaining metabolic homeostasis of

lipid biosynthesis (lipogenesis) and storage (adipogenesis) in

vertebrates [41]. Epigenetic regulation of gluconeogenesis is

also demonstrated under nutrient-impoverished conditions.

Promoter hypomethylation of the glycolytic enzyme, phos-

poenolpyruvate carboxykinase (PEPCK) increases gluconeo-

genesis (conversion of pyruvate to glucose) and glycogen

storage in baboons (Papio species) exposed in utero to nutrient

limitation [42]. Epigenetic regulation is also assisted by inter-

mediary metabolites produced during metabolic reactions.

For example, acetyl-CoA, produced from citrate during gly-

colysis (by the enzyme ATP-citrate lyase), mediates gene

activations by providing acetate units as substrate for histone

acetyltransferases during histone modifications. Key meta-

bolic genes regulated in this way include the glucose trans-

porter (GLUT4), hexokinase 2, phosphofructokinase 1 and

lactate dehydrogenase A [43]. Such epigenetic responses to

nutritional state show the regulation of subsets of genes via

promoter methylation changes, which in turn control ‘far’

ranging metabolic functions, potentially contributing to a

more dynamic and widespread adaptive response [40].

Epidemiological evidence also associates prenatal malnu-

trition of humans with hypomethylation of a key growth

factor gene, insulin-like growth factor II (or IGF-2) [44].

Hypomethylation of the IGF-2 gene is associated with

growth-restricted fetal development and low birth weights
www.drugdiscoverytoday.com e5
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[45]. Low fetal birth weight is symptomatic towards devel-

opment of metabolic syndrome and associated heightened

risks of coronary heart disease, hypertension and non-insulin

dependent diabetes later in life [46]. Unfortunately, we know

little of the interplay of nutrient restriction and epigenomic

changes on altered phenotype in wildlife species. The most

comprehensive evidence linking nutrition and differential

gene methylations to morphological/behavioral differences

occurs in honeybees (Apis mellifera). Distinctive castes of

queen and worker bees originate from the continual avail-

ability of the nutritional ‘royal jelly’ (containing the histone

deacetylase inhibitors, phenyl butyrate and (E)-hydroxy-2-

decenoic acid) to queen larvae, compared with the continual

diet of pollen and nectar fed to worker larvae [47,48]. Further-

more, the existence of up to 560 differentially methylated

genes in the genomes of queen and worker bees is proposed to

contribute to differential gene patterning, accounting for the

significant morphological and behavioral differences

between queen and worker bees [49].

Hypoxia and epigenetic imprinting

Morphological plasticity is evoked by variations in environ-

mental oxygen, with changes in total gill filament length and

surface area improving oxygen uptake in fish raised in

hypoxia [50,51]. Changes in gill morphology also correlate

with increased head width and lengths [52]. Gene expression

analysis of fishes (Gillichthys mirabilis and Danio rerio) and

crustaceans (Palaemonetes pugio) exposed to hypoxia has also

shown transcriptional changes indicating a shift in survival

strategy from growth to survival under hypoxia (i.e. up-

regulations of genes involved in erythropoiesis, angiogenesis

and glycolysis) [53–55]. Most of these responses are inducible

by the transcription factor, hypoxia inducible factor (or HIF-

1a) [56]. HIF-1a induces histone demethylase enzyme gene

expressions in vivo and in vitro in mammals. These genes

include the jumonji domain containing family of enzymes

constituting JMJD1A, 2A and 2B, which in turn activate

metabolic regulators and proliferative factors (such as PPARa

and the androgen receptor) [57,58].

Hypoxic exposure in Daphnia magna elevates hemoglobin

concentrations and reduces body sizes in both parents and

progeny (F1 and F2) [59]. Early-life (or developmental)

hypoxia exposure in zebrafish (Danio rerio) results in arrested

development, with skewed sex ratios towards a mainly male

dominated population [53,54]. Altered sex ratios are due to

altered steroidogenic enzyme gene expressions, such as the

down-regulation of aromatase (cyp19a1a) enzyme activity

and consequent increase of androgenic steroid concentra-

tions in the developing fish [54]. A transgenerational zebra-

fish study showed that adult fishes exposed to moderate

hypoxia (15% O2) for 2–4 weeks and then returned to nor-

moixa subsequently produced offspring that, at 8–12 days

post fertilization, exhibited enhanced hypoxia resistance
e6 www.drugdiscoverytoday.com
[17,60]. While population level impacts of hypoxia are well

documented in fishes and dinoflagellates [61], further

mechanistic investigations into its transgenerational impacts

are warranted.

Predator stressors and epigenetic imprinting

Variations in rat maternal behavior of grooming pups cause

increased methylation of the glucocorticoid receptor (GR)

promoter and responsiveness to stress. Higher maternal

grooming was correlated with ‘less’-fearful responsiveness

to stress with modest inductions of the hypothalamic-pitui-

tary-adrenal (HPA) axis. By contrast, lower maternal groom-

ing correlated with elevated H-P-A axis responsiveness and

‘more’ fearful response to stress [62]. Lowered GR promoter

methylation was associated with higher maternal grooming

and was hypothesized to lower corticotrophin releasing fac-

tor (CRF) production by feedback inhibition of the H-P-A axis,

minimizing stress responses [62]. Humans also show

increased maternal stress (due to domestic violence) to posi-

tively correlate with altered methylation of the GR promoter

and compromised stress response in offspring. Such methyla-

tion changes may contribute to a defensive response through

altered modulation of the H-P-A axis and release of cortico-

trophin releasing factors [63].

Daphnia showed the most prominent example of morpho-

logical plasticity in response to specific chemical cues

released by predators, called kairomones. Early juvenile life

stages exhibit greatest sensitivity, with morphological

changes including the development of ‘helmet’ formation

(exaggerated head shape) and ‘neckteeth’ (spines on the

dorsal ‘neck’ region) [64]. Genomic analyses of Daphnia pulex

exposed to kairomones show up-regulation of genes tran-

scribing morphometric factors (Hox3 and extradenticle),

juvenile hormone pathway enzymes (JHAMT and Met) and

insulin signaling pathways (InR and IRS-1). In concert, these

inductions may regulate adaptive (and survival) mechanisms

[65]. From an epigenetic viewpoint, the induction of JHAMT

(juvenile hormone acid methyltransferase) is of interest as it

constitutes a key enzyme involved in juvenile hormone

synthesis during metamorphosis. The predicted amino acid

sequence for JHAMT contains a conserved S-adenosylmethio-

nine (SAM) binding motif that allows its binding to SAMs,

enabling methylation reactions during hormone synthesis

[66]. This association of JHAMT and SAM implicates potential

epigenomic regulation by a morphometric gene. The poten-

tial association of drastically altered phenotypes of Daphnia

and epigenetic changes offer an exciting avenue of continued

research.

Conclusion

The epigenome is a potent mediator of altered metabolic and

physiological phenotypes over both single and multiple gen-

eration time scales. Susceptibilities to epigenetic mechanisms
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can represent either adaptation or mal-adaptation of an

organism experiencing changing environments. At present,

the most comprehensive evidence for the association of

altered epigenetic changes and disrupted phenotypes is pro-

vided from laboratory animal models and human epidemio-

logical studies. These studies provide an extensive list of

putative biomarkers that can be diagnostic of varying stressor

scenarios. More specifically, direct epigenetic (hypo/hyper-

methylation) changes have been demonstrated for key meta-

bolic enzyme genes (LPLase and PEPCK), nuclear receptors

(PPARa and GR), an enzyme responsible for regulating intra-

cellular cAMP levels (PDE4D4), and a proliferation (or

growth) factor (IGF-2). In addition, inductions and/or dis-

ruptions of various ‘effector’ enzymes responsible for main-

taining (or influencing) genome methylation levels are also

key diagnostic candidates. For example, the concomitant

measure of intracellular levels of SAM, DNMT, COMT,

GSH, JMJD along with genomic methylation changes can

inform of the status of altered epigenomes under contami-

nant (redox/biotransformation) and/or environmental

(restricted nutrition and low oxygen) stresses. Investigations

into the sensitivities of early life-stages to lasting epigenetic

modifications and the implications of such changes to the

fitness of a wider variety of aquatic vertebrate and inverte-

brate species are as yet unexplored and warrant further atten-

tion. Furthermore, investigation of stable transfer of

epigenetic modifications over several generations (i.e. >2–3

generations) is also worthy of further investigation. From an

ecological perspective, concerns over global climate and

resultant habitat change, along with the emerging cornuco-

pia of man-made contaminants, provides cause for concern of

the role of the altered epigenome as a threat to species fitness

or even survival.
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